CREB-AP1 protein complexes regulate transcription of the collagen XXIV gene (Col24a1) in osteoblasts.
نویسندگان
چکیده
Collagen XXIV is a newly discovered and poorly characterized member of the fibril-forming family of collagen molecules, which displays unique structural features of invertebrate fibrillar collagens and is expressed predominantly in bone tissue. Here we report the characterization of the proximal promoter of the mouse gene (Col24a1) and its regulation in osteoblastic cells. Using well characterized murine models of osteoblast differentiation, we found that the Col24a1 gene is activated sometime before onset of the late differentiation marker osteocalcin. Additional analyses revealed that Col24a1 produces equal amounts of two alternatively spliced products with different 5'-untranslated sequences that originate from distinct transcriptional start sites. Cell transfection experiments in combination with DNA binding assays demonstrated that Col24a1 promoter activity in ROS17/2.8 osteosarcoma cells is under the control of an upstream cis-acting element, which is shared by both transcripts and is recognized by specific combinations of c-Jun, CREB1, ATF1, and ATF2 dimers. Consistent with these results, overexpression of c-Jun, ATF1, ATF2, or CREB1 in transiently transfected osteoblastic cells stimulated transcription from reporter gene constructs driven by the Col24a1 promoter to different degrees. Moreover, chromatin immunoprecipitation experiments showed that these nuclear factors bind the same upstream sequence of the endogenous Col24a1 gene. Collectively these data provide new information about transcriptional control of collagen fibrillogenesis, in addition to implicating for the first time CREB-AP1 protein complexes in the regulation of collagen gene expression in osteoblasts.
منابع مشابه
Control of CCK gene transcription by PACAP in STC-1 cells.
The mechanisms by which neuroendocrine stimulants regulate CCK gene transcription are unclear. We examined promoter activation by pituitary adenylate cyclase-activating polypeptide (PACAP), a known CCK secretagogue, in the enteroendocrine cell line STC-1. The promoter region from -70 to -87 bp, relative to the transcriptional start site, contains a composite calcium/cyclic AMP response element ...
متن کاملBeta-boswellic acid and ethanolic extract of Olibanum regulate the expression levels of CREB-1 and CREB-2 genes
Physiological studies confirm improvement of memory by Olibanum, a resin from Boswellia species, while little is known about the molecular mechanism by which it affects memory performance. Two master transcription factors, CREB-1 and CREB-2, regulate downstream memory-related genes expression, leading to the long-term memory potentiation. This study addresses the effects of Beta-boswellic acid ...
متن کاملSequencing and phylogenetic study of APETALA1 homologous gene in garden cress (Lepidium sativum L.)
The flowering process in plants proceeds through the induction of an inflorescence meristem triggered by several pathways. Many of the genes associated with these pathways encode transcription factors of the MADS domain family. The MADS-domain transcription factor APETALA1 (AP1) is a key regulator of flower development. The first step to understand the molecular mechanisms under the function of...
متن کاملBeta-boswellic acid and ethanolic extract of Olibanum regulate the expression levels of CREB-1 and CREB-2 genes
Physiological studies confirm improvement of memory by Olibanum, a resin from Boswellia species, while little is known about the molecular mechanism by which it affects memory performance. Two master transcription factors, CREB-1 and CREB-2, regulate downstream memory-related genes expression, leading to the long-term memory potentiation. This study addresses the effects of Beta-boswellic acid ...
متن کاملFOXO1 orchestrates the bone-suppressing function of gut-derived serotonin.
Serotonin is a critical regulator of bone mass, fulfilling different functions depending on its site of synthesis. Brain-derived serotonin promotes osteoblast proliferation, whereas duodenal-derived serotonin suppresses it. To understand the molecular mechanisms of duodenal-derived serotonin action on osteoblasts, we explored its transcriptional mediation in mice. We found that the transcriptio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 281 9 شماره
صفحات -
تاریخ انتشار 2006